BCS Chemistry

Pacing Guide

(In Wks.)	снѕ	вснѕ	RCHS	RHS
Unit 1	4	4	4 (6)	Didn't respond
Unit 2	3 (4)	3 (4)	10 (8)	
Unit 3	4	4	9	
Unit 4	4	4	9	
Unit 5	2	2	4	

Possible Benchmarks: After Units, 1, 2, 4

Unit 1: Energy

HS-PS3-1 .Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.	Priority Standard
HS-PS3-4. Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).	Priority Standard

Unit 2: Atomic Structure

HS-PS1-1 . Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.	Priority Standard
HS-PS1-8 . Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.	Priority Standard
HS-PS4-4 . Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.	Priority Standard

Unit 3: Intermolecular and Intramolecular Forces

HS-PS1-3 . Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.	Priority Standard

Unit 4: Chemical Reactions

HS-PS1-2. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.	Priority Standard

HS-PS1-7. Use mathematical representations to support the claim that atoms, and therefore	Priority Standard
mass, are conserved during a chemical reaction.	

Unit 5: Rates and Stability of Chemical Reactions

HS-PS1-4 . Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.	Priority Standard
HS-PS1-5 . Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.	Priority Standard
HS-PS1-6 . Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.	Priority Standard