MS-PS1-1
Develop models to describe the atomic composition of simple molecules and extended structures. [Clarification Statement: Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include ammonia and methanol. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3D ball and stick structures, or computer representations showing different molecules with different types of atoms.] [Assessment Boundary: Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete depiction of all individual atoms in a complex molecule or extended structure.]

MS-PS1-3
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. [Clarification Statement: Emphasis is on natural resources that undergo a chemical process to form the synthetic material. Examples of new materials could include new medicine, foods, and alternative fuels.] [Assessment Boundary: Assessment is limited to qualitative information.]

MS-PS1-4
Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. [Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.]

RST.6-8.1
Cite specific textual evidence to support analysis of science and technical texts.

RST.6-8.7
Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).

WHST.6-8.8
Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.

MP2:
Reason abstractly and quantitatively.

MP4:
Supporting Standard
Model with mathematics.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Supporting Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.RP.A.3</td>
<td>Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.</td>
<td>Supporting Standard</td>
</tr>
<tr>
<td>6.NS.C.5</td>
<td>Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.</td>
<td>Supporting Standard</td>
</tr>
<tr>
<td>8.EE.A.3</td>
<td>Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 times 10^8 and the population of the world as 7 times 10^9, and determine that the world population is more than 20 times larger.</td>
<td>Supporting Standard</td>
</tr>
</tbody>
</table>
6th Grade Science
Unit 2: Forces & Interactions

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS2-1</td>
<td>Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.* [Clarification Statement: Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.] [Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.]</td>
</tr>
<tr>
<td>MS-PS2-2</td>
<td>Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object. [Clarification Statement: Emphasis is on balanced (Newton’s First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton’s Second Law), frame of reference, and specification of units.] [Assessment Boundary: Assessment is limited to forces and changes in motion in one-dimension in an inertial reference frame and to change in one variable at a time. Assessment does not include the use of trigonometry.]</td>
</tr>
<tr>
<td>MS-ETS1-1</td>
<td>Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.</td>
</tr>
<tr>
<td>RST.6-8.1</td>
<td>Cite specific textual evidence to support analysis of science and technical texts.</td>
</tr>
<tr>
<td>RST.6-8.3</td>
<td>Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.</td>
</tr>
<tr>
<td>WHST.6-8.7</td>
<td>Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.</td>
</tr>
<tr>
<td>WHST.6-8.8</td>
<td>Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.</td>
</tr>
<tr>
<td>MP2</td>
<td>Reason abstractly and quantitatively.</td>
</tr>
<tr>
<td>6.NS.C.5</td>
<td>Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.</td>
</tr>
<tr>
<td>Standard</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>6.EE.A.2</td>
<td>Write, read, and evaluate expressions in which letters stand for numbers.</td>
</tr>
<tr>
<td>7.EE.3</td>
<td>Solve real-life and mathematical problems using numerical and algebraic expressions and equations.</td>
</tr>
<tr>
<td>7.EE.B.3</td>
<td>Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.</td>
</tr>
<tr>
<td>7.EE.B.4</td>
<td>Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.</td>
</tr>
</tbody>
</table>
6th Grade Science

Unit 3: Earth Systems

MS-ESS1-1
Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. [Clarification Statement: Examples of models can be physical, graphical, or conceptual.]

MS-ESS1-2
Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. [Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students’ school or state.)] [Assessment Boundary: Assessment does not include Kepler’s Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.]

MS-ESS1-3
Analyze and interpret data to determine scale properties of objects in the solar system. [Clarification Statement: Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object’s layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system bodies.]

MS-ETS1-4
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

RST.6-8.1
Cite specific textual evidence to support analysis of science and technical texts.

RST.6-8.7
Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).

SL.8.5
Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.

MP2:
Reason abstractly and quantitatively.

MP4
Supporting Standard
Model with mathematics.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.RP.A.1</td>
<td>Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, “The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak.” “For every vote candidate A received, candidate C received nearly three votes.”</td>
</tr>
<tr>
<td>7.RP.A.2</td>
<td>Recognize and represent proportional relationships between quantities.</td>
</tr>
<tr>
<td>6.EE.B.6</td>
<td>Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.</td>
</tr>
<tr>
<td>7.EE.B.4</td>
<td>Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.</td>
</tr>
</tbody>
</table>

Supporting Standard
6th Grade Science
Unit 4: Weather & Climate

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Priority/Supporting Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS2-4</td>
<td>Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. [Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]</td>
<td>Priority Standard</td>
</tr>
<tr>
<td>MS-ESS2-5</td>
<td>Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions. [Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).] [Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.]</td>
<td>Priority Standard</td>
</tr>
<tr>
<td>MS-ESS2-6</td>
<td>Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]</td>
<td>Priority Standard</td>
</tr>
<tr>
<td>MS-ETS1-2</td>
<td>Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.</td>
<td>Supporting Standard</td>
</tr>
<tr>
<td>RST.6-8.1</td>
<td>Cite specific textual evidence to support analysis of science and technical texts.</td>
<td>Supporting Standard</td>
</tr>
<tr>
<td>RST.6-8.9</td>
<td>Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.</td>
<td>Supporting Standard</td>
</tr>
<tr>
<td>WHST.6-8.7</td>
<td>Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and</td>
<td>Supporting Standard</td>
</tr>
<tr>
<td>WHST.6-8.8</td>
<td>Supporting Standard</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WHST.6-8.9</th>
<th>Supporting Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw evidence from informational texts to support analysis, reflection, and research.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SL.8.5</th>
<th>Supporting Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MP2:</th>
<th>Supporting Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason abstractly and quantitatively.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.RP.A.1</th>
<th>Supporting Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, “The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak.” “For every vote candidate A received, candidate C received nearly three votes.”</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.RP.A.2</th>
<th>Supporting Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognize and represent proportional relationships between quantities.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.NS.C.5</th>
<th>Supporting Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.EE.B.3</th>
<th>Supporting Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.</td>
<td></td>
</tr>
</tbody>
</table>
6th Grade Science
Unit 5: Geological Processes & History of Earth

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS2-1</td>
<td>Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]</td>
</tr>
<tr>
<td>MS-ESS2-2</td>
<td>Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth’s surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.]</td>
</tr>
<tr>
<td>MS-ESS2-3</td>
<td>Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. [Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).] [Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.]</td>
</tr>
</tbody>
</table>

Priority Standard

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST.6-8.1</td>
<td>Cite specific textual evidence to support analysis of science and technical texts.</td>
</tr>
<tr>
<td>RST.6-8.7</td>
<td>Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).</td>
</tr>
<tr>
<td>RST.6-8.9</td>
<td>Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.</td>
</tr>
<tr>
<td>WHST.6-8.2</td>
<td>Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.</td>
</tr>
<tr>
<td>SL.8.5</td>
<td>Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.</td>
</tr>
</tbody>
</table>

Supporting Standard
<table>
<thead>
<tr>
<th>MP2:</th>
<th>Reason abstractly and quantitatively.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.EE.B.6</td>
<td>Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.</td>
</tr>
<tr>
<td>7.EE.B.4</td>
<td>Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.</td>
</tr>
<tr>
<td>7.EE.3</td>
<td>Solve real-life and mathematical problems using numerical and algebraic expressions and equations.</td>
</tr>
</tbody>
</table>
6th Grade Science

Unit 6: Matter and Energy in Organisms and Ecosystems

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Priority/Supporting Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS2-1</td>
<td>Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. [Clarification Statement: Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.]</td>
<td>Priority Standard</td>
</tr>
<tr>
<td>MS-LS2-2</td>
<td>Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. [Clarification Statement: Emphasis is on predicting consistent patterns of interactions in different ecosystems in terms of the relationships among and between organisms and abiotic components of ecosystems. Examples of types of interactions could include competitive, predatory, and mutually beneficial.]</td>
<td>Priority Standard</td>
</tr>
<tr>
<td>MS-LS2-3</td>
<td>Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. [Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]</td>
<td>Priority Standard</td>
</tr>
<tr>
<td>RST.6-8.1</td>
<td>Cite specific textual evidence to support analysis of science and technical texts.</td>
<td>Supporting Standard</td>
</tr>
<tr>
<td>RST.6-8.7</td>
<td>Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).</td>
<td>Supporting Standard</td>
</tr>
<tr>
<td>WHST.6-8.2</td>
<td>Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.</td>
<td>Supporting Standard</td>
</tr>
<tr>
<td>WHST.6-8.9</td>
<td>Draw evidence from informational texts to support analysis, reflection, and research.</td>
<td>Supporting Standard</td>
</tr>
<tr>
<td>SL.8.1</td>
<td>Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 8 topics, texts, and issues, building on others' ideas and expressing their own clearly.</td>
<td>Supporting Standard</td>
</tr>
<tr>
<td>SL.8.4</td>
<td>Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation.</td>
<td>Supporting Standard</td>
</tr>
<tr>
<td>SL.8.5</td>
<td>Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.</td>
<td></td>
</tr>
<tr>
<td>6.EE.C.9</td>
<td>Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d = 65t$ to represent the relationship between distance and time.</td>
<td></td>
</tr>
<tr>
<td>6.SP.B.5</td>
<td>Summarize numerical data sets in relation to their context.</td>
<td></td>
</tr>
</tbody>
</table>